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C:1 For the past two years, the Army Research institute has been angage4
in basic tesLing research under Project METTEST - Methodological Issues
in the Construction of Criterion-Referenced Tests. Project METTEST was
conceived to provide basic support for the Army's rapidly growing tread
towards, performance oriented training and testing. This paper sumparizes
part of the thinking which has evolved from METTEST.

One question that is present whenever test scores are considered isx
What are the "true" scores that the fallible test scores represent?
problem is so complex that there is considerable discussion about what
"true" score means (see, for example, Lord and Novick, 1968 pp. 89,44)'
Even if a definition is agreed upon, the estimated value of the true °cote
given an observed test score will vary according to the particular meas4te-
ment model used to evaluate the data.

4111
The absolute value of true score has been relatively unimportant fet

classical measurement. This is because the primary purpose of claSsical
testing is to rank order examinees consistently. For this purpose, the
critical problem is not determining the true score, but rather it is
determining the correlation between true scores and observed scores. "le
techniques uf c.kassical measurement are powerful because it is possible
to determine this correlation without knowing the actual values of the
true scoms. It is possible to evaluate how well a given test yields
scores that corrclate highly with true scores and hence, how well the
test will rank order examinees consistently.

Criterion-referenced testing does not allow for the luxury of placillg
the emphasis in test evaluation on correlation. In fact, it is possible
for a good criterion-referenned test to correlate zero with true score'
This might occur in a mastery learning context where all examinees have
attained an equal level of ability and all examinees obtain the satne
test score. If one attempts to determine the correlation between a

The views expressed in this paper are those of the author and do not
necessarily imply endorsement by the U. S. Army.
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collection of equal observed scores and equal abilities, the value of
the coefficient will be zero. The major purpose of criterion-referenced
testing is not to rank order examinees consistently. Rather, it is to
estimate the true capabilities of examinees to perform specific tasks.
Hence, the problem of true score determination assumes critical importance.

This paper discusses four measurement models which have potential
for evaluating the results of criterion-referenced tests. In particular,
the paper compares the estimates each model yields for true scores given
observed scores. The four models to be discussed are 1) a model based
on observed proportion correct, 2) a binomial error model, 3) a Bayesian
model, and 4) the Rasch one parameter logistic model.

The data for the analyses were collected as part of a study which
evaluated tank gunnery training devices (Rose, et. al, 1975). Th,2 data

consist of hit/miss scores recorded for 12 rounds fired from the main
gun of the M60A1 tank at a moving target. 154 crews participated in
the experiment. A summary of the data is given in Table 1. For the
original experiment the 154 crews were broken into seven groups corres-
ponding to different training programs. The reanalysis of the data for
this paper ignored the difference in training since it is irrelevant to
the present problem. At some future time it migat be of interest to
study whether test results are consistent across apriori defined differ-
ent examinee populations.

The major requirement of a criterion-referenced test is that all
items come from a well-defined domain (Mlllman, 1973). In other words,
it is essential that all items in the test (or sub-test) measure the
ability to perform the same objective. The twelve essentially identical
rounds provide an ideal representation of a criterion-referenced test
designed to evaluate gunner ability to hit moving 16 x 10' plywood tank
silhouettes at ranges of approximately 700 and 750 meters with standard
105mm HEAT TPT ammunition. The twelve rounds represent a sample of an
infinite number of similar rounds that could have been fired. Thus, it
seems reasonable, and it is consistent with established measurement
theory, to define the true score as the proportion of hits that would be
obtained were the infinity of rounds fired. In other words, the twelve
rounds represent a sample of trials chosen from an infinite population
of possible trials. The task then is to infer from the performance on
the twelve trial test what proportion of hits would be achieved if all
trials were given. The following section of the paper discusses four
procedures for accomplishing this task.

The first procedure uses the obtained proportion correct as the esti-
mated true score. If we assume that the test is a random sample of trials
from the domain of interest, and if the trials are dichotomously scored,
and if we assume that the response to any given item is not dependent on
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the response to any ,,ther i.tem (e.g., there is no learning occurring duvr
ing testing, nor is there any fatigue or similar effect occurring), then
it is appropriate to describe the data mathematically as a series of
independent Bernoulli trials. In this case, the proportion of sample
trials scored correct by an individual is an unbiased estimate of the
proportion correct in the infinite domain for that iniividual. This
model implies that all items are of equal difficulty for an individual.
For example, if the proportion that would be correct in the whole domain
is p for some individual, then the probability that he would respond
to any randomly sampled trial correctly is also p. Notice that this
does not imply that two individuals of differing ability will find the
trials equally difficult. The more capable individual will find trials
uniformly easy, the less capable individual will find the same trials
uniformly difficult. Table 2, Column A shows the proportion correct
corresponding to each obtained score on this 12 trial test.

. The proportion correct can also be show" to be the maximum likeli-
hood estimator of the true proportion correct (Lord and Novick, 1968,
p. 88). The proportion correct has a mean value (over repeated sampling)
of p, the true proportion correct and a variance of p(1-p)/n. Hence,
particularly for small sample sizes, this estimate of the true score is
probab/y not adequately reliable. Notice that the variance of the esti-
mated proportion correct will not be a constant for all obtained scores.
In fact, it is largest for the mid range of thr distribution (p = .500
yields the largest variance. .25/n), and decreases to zero at the extremes.
This is not an unreasonable result. We would expect very good or very
poor examinees to respond in a highly predictable and consistent manner.
It is far more difficult tc Inake fine discriminations near the middle of
the distribution. Hence, the practice in test construction to design
items to be most sensitive tc tne range of abilities near the middle.
Lord and Novick (1968) point out an interesting paradox associated with
this type of analysis.

"The standard error ot measurement is smallest for examinees
whose true scores are nearest one or zero. Should it not follow
from this that the best measuring instrument is a test composed
of items so easy that everyone will have a relative true score
near one, or so hard that everyone will have a relative true score
near zero?

The answer to this question is that the effectiveness of
a test as a measuring instrument usually does not depend merely
on the standard error of measurement, but rather on the ratio of
the standard error of measurement to the standard deviwzion of
observed scores in the group. The more discriminating the test
items, the larger will be the standard deviation of observed
scores, other things being equal; and hence, the less will be the
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danger that true differences will be swamped by random errors
of measurement and lost to view.

The small standard errors of measurement that result when a
test is made very easy are not beneficial because the standard
deviation of observed scores for such tests is also small. This
is most apparent in the limiting case when the test is so easy (or
so difficult) that everyone gets a perfect (or a zero) score and
both standard deviations are zero. Even though in this case there
are no errors of.measurement at all, such a test obviously is not
discriminating among examinees and thus is not a useful measuring
instrument (p. 252)."

One possible exception to the Lord and Novick statement might occur
if a sample of examinees all of whom were complete masters (nonmasters) of
the material took the test. Then one would have a test that did not
distinguish among identical individuals, which is what is desired. How-
ever, the occasions when the examinee population is likely to be homog-
eneous enough for this to occur are probably infrequent.

A natural extension of the proportion correct model is the binomial
error model. -he binomial error model is more powerful than the simple
proportion correct because the entire distribution of observed responses
is included in the analysis. All of the assumptions discussed in relation-
ship to the proportion correct model hold for the binomial error model.
The major addition is the specification of the conditional distribution
for observed score x for given true proportion correct T. This distri-
bution is the bihomial:

(1) h (x1T) = (131) Tx (1 T)n-x x = 0,1,...n,
0 <. T <. 1,

and n equals the total number of trials on the test.

Lord and Novick (1968) prove a very useful consequence of the model.
"Under the binomial error model, if the observed score distribution is
negative hypergeoMetric, then the regression of true score on observed
score is linear (p. 517)." They then outline a procedure for estimating
the parameters of the negative hypergeometric distribution from observed
scores. The procedure was carried out for the tank gunnery data and the
theoretical distribution was compared to the observed distribution. The
'mine of x2 for this analysis was 3.451. Evaluation of this value with
vine degrees of freedom yielded .95>p (X2 = 3.451) >90. Since this
represents adequate fit it is possible to proceed with the analysis assum-
ing that the regression of true score on observed score is linear.
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The regression function can be written

(2) E(Tlx) = a21 Xln (1 an) Ukin, x=0,1...n, and px = the mean

of the observed scores, (321 = n/( - 1) [1 - nx(n-px)/n41 ctc =

the variance of the obs rved scdres. (Lord and Novick, 1968 p. 517, 521)

For these data the , alue of the regression function is

(3) E(Tfx) = .059 x ± .161, x = 0, 1, n.

The estimated true score calculated using the above regression
function are found in Table 2, Column B.

Comparing these results with those obtained under the proportion
coerect model shows that they ,re comparable, particularly in the mid
range of the distribution. 1 iifferences are directly attributable to
a regression effect in which tne extreme values are regressed toward the
mean of the distribution. What is hapPening, in effect, is that per-
formance of the group is being used to help temper judgments about indi-
viduals. On the one hand, this point of view seems to contradict the
philosophy underlying criterion-referenced measurement, that an indi-
vidual should be judged on the basis of his ability and not compared with
his peers. However, since in most cases the examinee population does
have some characteristics in common and since extreme scores are suspect
it makes sense to use all available data. This particular model is
especially attractice because it has a built in validity check. If one
is not successful in fitting the negative hypergeometric distribution
to the data it implies that the regression is either not linear or that
the binomial error model is not appropriate. In any case, it immediately
warns the user to be careful of any interpretations he makes.

Lewis, Wang, and Novick (1973) have applied the same philosophy
implied in the binomial error model, that all available information be
utilized, to the development of a measurement model based on Bayesian
statistical theory. The procedures are complex and require computeriza-
tion for full utilization. The results of using their procedures to
evaluate these data reveal some interesting and thought provoking impli-
cations of the Bayesian approach.

The procedure begins by mapping the observed scores into a new set
of variables (gi) using an arcsine transformation. The gj nre assumed
to be normally aistributed with mean yi= sin71 wiTi and variance yj =
(4n + 2)-1, where yj is the transformed value of the true proportion of
successes, Tj, and n in the number of test items. The assumption of
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normality is shown to be reasonable for tests of at least eight items.
In addition to the observed data, the procedure requires that two addi-
tional parameters be specified by the user. These parameters describe
the prior beliefs concerning the distribution of yj. The yj are assumed
to be a random sample from a normal distribution with mean ur, variance (11

The ur and (pp are assumed to be independent, having a uniform and inw7:se

chi-square distibution'respectively. The first additional parameter
that must be specified is the degrees of freedom for t;le inverse chi-
square distribution. A recommended value for most practical purposes
is eight. This value was used for the analysis described in this paper.
The second additional parameter is also related to the inverse chi-square
distribution. It is designated t and can be thought of as the length of
a test that the user would consider to offer as much information as he
now has (before testing) about the examinees. Thus, if very little is
known, t will be small, and if the prior information is extensive, t will
be large. Since relatively little prior information was available for
the data described in this paper, the value of t chosen was three. Clearly,
before thi procedure can.rome into wide use, the relative importance of
the t value to the final results must be investigated. Experience based
on empirical applications of the procedure will also help in establishing
practical guidelines for the use of the procedure. (For a more detailed
discussion of the rationale behind this procedure see Novick, Lewis, and
Jackson, 1973 Lnd Lewis, Wang, and Novick, 1975).

Once the observed data have been transformed and the parameter values
specified, the application of the model is relatively straightforward..
Two alternative procedures are available. For test lengths up to 30
items, examinee groups up to 80 persons, and transformed score variances.
up to .05 (reasonable values for most applications), Wang (1973) has
prepared tables of constants for carrying out the necessary calculations
for their use. For larger sap,- 'e sizes, Lewis, Wang, and Novick (1973)
provide a procedure for carry16 out 1:he necessary calculations which
involves solving a cubic equation. The later procedure was used for
this example.

The most important result of the procedure is a regression equation
for the posterior values of yj. eor the example data the equation is,

(4) E(Yji cr g) = .710 gj + .244, where (pr is the posterior variance

salved for by a cubic equation and the gj are the transformed variables.

It is interesting to compare this equation with the regression
equation obtained as a result of applying the binomial error model
(Equation 3). The two equations have essentially the same form. While

they cannot be directly compared since the Bayesian equation is written
in terms of transformed variables one can compare the relative weights
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given the mean of observed data and the individual variables themselves.
(The pure number in each equation reflects the weight applied to the
mean). In the Bayesian approach the individual variables are weighted
much more heavily thanthe mean. In the binomial error approach the
mean seems to be relatively more important. This should result in the
true proportion estimates found by the Bayesian approach to be regressed
less toward the mean than the binomial error model results. These
results are shown in Table 2, 'Column C. In general, a regression effect
is seen for the Bayesian results but it is not as strong as the binomial
error model results.

The heavy weight accorded the f.ndividual score values in the Bayesian
approach is a direct result of the small amount of prior information. This
makes intuitive sense. for if little is known about a group it seems un
reasonable to put much emphasis in overall indices of group ability such
as the mean. Had the prior information been more conclusive, more use
would have.been made of group data in determining the estimates of the
true porportions correct.

The final model to be discussed is the RIsch one parameter logistic
model. Superficially the asch model appears to be conceptually very
different from the previously discussed models, however the differences
are more apparent than real. The Rasch model hypothesizes that people
are distributed on an underlying ability trait and further that their
response to a test trial or item is governed purely by the ability of
an individual and the difficulty of the tr:Lal. This is analogous to the
probability of responding correctly to any given trial that underlies
the response patterns of examinees in the proportion correct model, the
true score distribution that is observed as a negative hypergeometric
distribution in the binomial error model, and the posterior distribution
of abilities in the :dayesian model. The Rasch model's strength lies in
the fact that it is possible to calibrate a set of items with differing
difficulties and administer different subsets of those items to different
groups of examinees. The resulting estimates of individual abilities will
be on.the same scale and it will be possible to compare individuals
regardless of the particular items chosen.

The data in this example were analyzed at the University of Chicago
by Dr. Benjar'l Wright. The results of the analysis showed that the
twelve trials differad in apparent difficulty. The first trials seemed
to be more difficult than the latter trials indicating that a gradual
learning effect occurred during the test. Notice that this implies that
the assumption that all items were identical is not strictly valid. It
also calls into question the validity of interpreting the true score as
the proportion of items that would be correct if all items were given.
If items are not eqw.11y difficult is it not more important to know which
items are responded to correctly? On the other hand, if this level of
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specificity is desired it will require fax more extensive testing than
seems practical. Two alternatives seem available. The first is.to accept
the approximation implied by the definition of true score as the propor-
tion correct for all items. For most practical purposes this seems to be
acceptable. The other alternative is to begin thinking in terms of latent
traits. Such a transition will require that a large amount of empirical
data be collected so that abilities expressed in terms of latent traits
cna be given meaning in terms of observable behavior. For example, the
data discussed in this paper were calibrated according to the Rasch model
so that individuals scoring six hits were assigned an ability value equal
to 0.00, and those scoring eleven hits an ability value equal to 2.45.
(The entire set of Rasch ability values is shown in Table 2, Column E.)
Stating abilities and minimum standards in terms of latent variables will
allow for great flexibility in testing, but will require major efforts
in interpretation.

The major purpose of this paper is to compare estimated true scores
obtained by applying several measurement models. Therefore, it was
necessary to sacrifice some of the information obtained from the Rasch
analysis in order to obtain values on the same scale as the other values.
This was accomplished by assigning the average difficulty of the twelve
trials to each trial and applying the basic equation of the Rasch model.

The Rasch model states that the probability of a correct response
to any given trial by a given individual is a function of the difficulty
of that trial and the ability of the individual:

(5) p = e(b-d)/ 1 + e(b-d) , where b is the item's difficulty and d is

the person's ability. If the above equation is solved with b equal to the
average item difficulty, the estimated average probability of a correct
response is found. This value corresponds to the estimated true propor-
tion correct found using the other models. These results are shown in
Table 2, Column D. (Note that results are not shown for zero correct or
twelve correct. This is because neither extreme score is used in.the
calibration and hence no ability estimates are obtained.) The estimates
for the Rasch model are very similar to those found for the proportion
correct model. This occurs because the Rasch model calibration attempts
to find values for b and d which duplicate the observed data. The reliance
on the group mean which is incorporated in the binomial error model and
the Bayesian model is not found in the Rasch model.

Comparison of the estimated true proportion of hits for the four
measurement models indicates relatively little difference among the

models. For practical purposes, such as assigning individuals lo
mastery groups, there are not likely to be great differences when
different apr..oaches are used. Until more theoretical and empirical
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work has been cewleted it is not possible to nave qualitative state-
ments about the different approaches. However, some Reneral strengths.
and weaknesses of the models can be identified.

The prOportion correct model is clearly the easiest to apply.
Calculations are minimal and the interpretation is straight forward.
The approach has two weaknesses. First, none of the information about
the group is incorporated. Group data is valuable in interpreting test
results and should be considered. A second related weakness is that
there is no direct connection between the estimated true proportions
correct and the observed data. The calculations for the proportion
correct model can be done without observed dace. Thus, it seems to
offer a good first approximation. If the observed data make sense when
interpreted in terms of this model then it can probably be utilized. How-
ever, if examinees perform very differently than they would be expected
to perform, then the model may be inappropriate.

The binomial error model shows, in effect, what happens when the
proportion correct model is applied to observed data. Its strengths
lie in its use of all the test information and the built in check on
its fit to the data. An obvious weakness is that the model cannot be
used if the negative hypergeometric distribution does not fit the
observed data. In such cases the regression of true score on observed
score is not linear. Techniques do exist for calculating the non-
linear regression but they require smoothing, estimation procedures,
and tedious computations. Whether such measures are warranted is
questionable.

The Bayesian approach will be most useful when significant prior
information is available. For cases such as that presented in this paper
the true power of the Bayesian approach will not be demonstrated. The
Bayesian approach has the advantage of incorporating prior information
into the analysis in addition to incorporating all the observed'data.
The major disadvantage of the Bayesian approach is that very often
intuitive estimates of priors are in error. Such errors can lead to
misleading results. However, the potential of the Bayesian approach for
increasing the precision and efficiency of testing war.:ants that practical
guidelines for its application be developed.

The Rasch model presents an opportunity for testing to pursue new
directions. It has the potential for greatly increasing flexibility in
testing. Like the binomial error model and the Bayesian model, the Rasch
model relies on obServed data in calculations, however onte a calibrated
item pool is available the person ability estimates are free of the
particular item set used. This independence from the item set puts the
major emphasis on the individual's ability. Thus, it seems philosophi-
cally more attuned to criterion-referenced testing. Weaknesses of the
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Rasch.model include possihle problems in interpretation and the fact that,
not all data sets will fit the model. If the data do not fit, it requires
major revisions of the test or recourse to an alternative model.

The final choice of a model should be based on the needs of the test
ing program and the resources available to analyze the data. It is hoped
that this paper will lead practitioners to more carefully consider their
test results, whatever model they choose. In this way, perhaps the inter
pretations of test scores and the decisions based on them will be improved.
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Tab]e 1
Summary of Tank Gunnery Data

Observed Number
of Hits Frequency Round Number

Proportion of
Examinees
Scoring a Hit

0 2 1 .429

1 2 2 .487

2 10 2, .526

3 12 4 .474

4 13 5 .500

5 16 6 .558

6 20 7 .545

7 16 8 .662

8 19 9 .578

9 14 10 .636

10 14 11 .604

11 11 12 .630

12 5

m=154

Mean Number of Hits: 6.630
Variance: 8.457
Mean Proportion of Hits: .553
KR-20 = k/k-1(1-Epely ) = .7136

Note: The KR-20 reliability coefficient is ineludeJ here not because the
author necessarily advocates ts 7--e in evaluating cliterion-referenced
tests. It is included because 1 helps to describe the nature of this data
and this group of examinees. ' Niper discussing some valid interpretations
of classical measurement tech-lques for criterion-referenced tests is in
preparation.
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Table 2
Summary of Estimate True Proportion of Hits

Observed A: Proportion B: Binomial C: Bayesian D: Rasch E: Rasch

Score Correct Error Model .21.222E11121 (Ability)

0 .000 .161 .093 ----

1 .083 .220 .201 .079 -2.45

2 .167 .279 .278 .161 -1.65

3 .250 .338 .342 .244 -1.13

4 .333 .397 .401 .330 -0.71

5 .417 .456 .469 .416

6 .500 .515 .516 .500 0.00

7 .583 .574 .574 .584 0.34

8 .667 .633 .633 .670 0.71

9 .750 .692 .691 .756 1.13

III
10 .833 .751 .752 .839 1.65

11 .917 .810 .821 .921 2.45

12 1.000 .869 .921
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